Inhibition of Lon protease by bacterial lipopolisaccharide (LPS) though inhibition of ATPase

نویسندگان

  • Nahoko Sugiyama
  • Noriko Minami
  • Yoshiyuki Ishii
  • Fumio Amano
چکیده

Lon protease, an ATP-dependent protease in Escherichia coli, degrades abnormal proteins and regulates several important cellular functions. Here we show novel inhibitory effects of lipopolysaccharide (LPS) on Lon protease activities. LPS inhibited the peptidase, protease, and ATPase activities of Lon; and a dose-response study showed that LPS at low doses more effectively inhibited the ATPase activity than the peptidase one, suggesting different susceptibility to LPS of these activities associated with Lon. Structure-activity relationship studies revealed that ReLPS, detoxified LPS, and mono-phosphoryl as well as diphosphoryl lipid A, also showed similar inhibition, suggesting that neither O-antigen polysaccharide nor O-acyl chain, but rather phosphate groups in the lipid A domain, seem to have been responsible for the inhibitory effects. Besides, LPS was co-precipitated with Lon by an anti-Lon antibody, showing the direct binding of LPS to Lon. These results suggest that LPS bound to Lon and inhibited the protease activity of Lon by inhibiting its ATPase activity. These results also seem to be another example of a negatively charged phosphate group in membrane components of Escherichia coli being involved in the regulation of protease activity of Lon through binding to Lon and inhibiting its ATPase activity, as in the case of cardiolipin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utilization of Mechanistic Enzymology to Evaluate the Significance of ADP Binding to Human Lon Protease

Lon, also known as Protease La, is one of the simplest ATP-dependent proteases. It is a homooligomeric enzyme comprised of an ATPase domain and a proteolytic domain in each enzyme subunit. Despite sharing about 40% sequence identity, human and Escherichia coli Lon proteases utilize a highly conserved ATPase domain found in the AAA+ family to catalyze ATP hydrolysis, which is needed to activate ...

متن کامل

A membrane-bound archaeal Lon protease displays ATP-independent proteolytic activity towards unfolded proteins and ATP-dependent activity for folded proteins.

In contrast to the eucaryal 26S proteasome and the bacterial ATP-dependent proteases, little is known about the energy-dependent proteolysis in members of the third domain, Archae. We cloned a gene homologous to ATP-dependent Lon protease from a hyperthermophilic archaeon and observed the unique properties of the archaeal Lon. Lon from Thermococcus kodakaraensis KOD1 (Lon(Tk)) is a 70-kDa prote...

متن کامل

Crystal structures of Bacillus subtilis Lon protease.

Lon ATP-dependent proteases are key components of the protein quality control systems of bacterial cells and eukaryotic organelles. Eubacterial Lon proteases contain an N-terminal domain, an ATPase domain, and a protease domain, all in one polypeptide chain. The N-terminal domain is thought to be involved in substrate recognition, the ATPase domain in substrate unfolding and translocation into ...

متن کامل

ENZYME INHIBITION BY HERBAL MOLLUSCICIDES IN THE NERVOUS TISSUE OF THE SNAIL LYMNAEA ACUMINATA

The effect of Annona squamosa, Lawsonia inermis and their combination with other herbal molluscicides were studied on different enzyme activity in the nervous tissue of Lymnaea acuminata. Twenty-Four hour in vivo exposure to 40% and 80% of 24 h LC50 of plant derived molluscicides and their combination with other molluscicides such as Cedrus deodara, Azadirachta indica oil, Allium sativum, Polia...

متن کامل

Characterization of the ATP-Dependent Lon-Like Protease in Methanobrevibacter smithii.

The Lon protease is highly evolutionarily conserved. However, little is known about Lon in the context of gut microbial communities. A gene encoding a Lon-like protease (Lon-like-Ms) was identified and characterized from Methanobrevibacter smithii, the predominant archaeon in the human gut ecosystem. Phylogenetic and sequence analyses showed that Lon-like-Ms and its homologs are newly identifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013